Heat Capacity Measurement of Cubic Lithium Tungsten Bronzes from 200 to 800°K

HIDEAKI INABA AND KEIJI NAITO

Department of Nuclear Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

Received February 5, 1976

Heat capacities of three cubic lithium tungsten bronze samples (Li_xWO_3) with x values of 0.363, 0.437, and 0.478 were measured from 200 to 800°K. Heat capacities per gram-atom at the same temperature of $Li_{0.363}WO_3$ and $Li_{0.437}WO_3$ were equal within experimental error and also equal to those of $Na_{0.485}WO_3$, $Na_{0.698}WO_3$, and $Na_{0.794}WO_3$, regardless of the difference of the composition. λ -type heat capacity anomalies were observed around 330, 460, and 590°K in $Li_{0.363}WO_3$ and around 330 and 460°K in $Li_{0.437}WO_3$ and $Li_{0.478}WO_3$, showing the existence of second-order phase transitions. The entropy increments of the transitions were obtained as 1.36, 0.45, and 1.68 J mole⁻¹ K⁻¹ for $Li_{0.363}WO_3$, 1.09 and 0.59 J mole⁻¹ K⁻¹ for $Li_{0.437}WO_3$, and 1.42 and 0.50 J mole⁻¹ K⁻¹ for $Li_{0.478}WO_3$.

The cubic lithium tungsten bronzes, Li_xWO_3 , are nonstoichiometric compounds with 0.25 < x < 0.50 (1) and they have perovskite structure and metallic properties. In the previous paper (2), heat capacity of Na_xWO₃ for various x values was measured and λ -type heat capacity anomalies were observed around 400°K. It was found that the transition temperatures and enthalpy and entropy increments for the transition are changed with x values.

 Li_xWO_3 samples were prepared in a manner similar to that described in the previous paper (2). Li_2WO_4 , WO_3 , and W powder were mixed in the proper ratios, sealed in an evacuated quartz tube, and kept at 900°C for 150 hr. The products were crushed into a fine powder and annealed at 900°C for 150 hr. The lithium concentration of the samples was determined by the measurement of the lattice parameter of X-ray diffraction using the relation between the lattice parameter and the lithium concentration (3):

$$a_0 = 3.785 - 0.134x$$

The heat capacity of Li_xWO_3 has been measured by the adiabatic scanning calorimeter (4) and conditions for the measurement were the same as in the previous paper (2). The sample amount used was 20.310 g for $Li_{0.363}WO_3$, 20.648 g for $Li_{0.437}WO_3$, and 20.240 g for $Li_{0.478}WO_3$.

The heat capacities measured for the three samples are listed in Table I and are shown in Fig. 1. The precision of the heat capacity measurement is within ± 1 %. As described in previous papers (2, 4), the scanning error was corrected by shifting the sample temperature by about 3°K for the heating rate, 2°K min⁻¹ in this experiment.

The heat capacities of Li_xWO_3 and Na_xWO_3 per gram-atom (per 1(4 + x) mole) at 700 and 800°K, which have nothing to do with the anomaly, are given in Table II. Heat capacities per gram-atom are the same within experimental error, except for the case of $Li_{0.478}WO_3$, regardless of the differences in composition among the samples. Heat capacities per gram-atom of $Li_{0.478}WO_3$ are greater than those of the others by about 2%. The reason for this is not clear.

As seen in Fig. 1, three heat capacity anomalies are observed around 330, 460, and 590°K in $Li_{0.363}WO_3$, and two anomalies

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

TABLE I

IADLE I (continuea)		TABLE	I	(continued)
---------------------	--	-------	---	-------------

HEAT CAPACITY OF Li _x WO ₃				C_p (J mole ⁻¹ K ⁻¹)			
т	с	p (J mole ⁻¹ K	⁻¹)	1 (°K)	Li _{0,363} WO ₃	Li _{0.437} WO ₃	Li _{0.478} WO ₃
(°K)	Li _{0.363} WO ₃	Li _{0.437} WO ₃	Li _{0.478} WO ₃	435	98.4	101.2	103.5
200	(1.0	~	(7.4	440	98.9	101.6	103.9
200	61.8	64.2	67.4	445	99.5	102.4	104.6
205	63.4	65.8	69.3	450	100.1	103.1	104.9
210	65.0	67.2	71.2	455	100.5	103.4	105.3
215	66.3	68.5	72.5	460	101.2	104.1	106.1
220	67.4	69.8	74.2	465	101.9	104.2	106.5
225	68.4	71.0	75.0	470	102.2	104.4	107.0
230	69.5	72.2	76.4	475	102.3	104.7	107.3
235	70.9	73,4	77.9	480	102.6	104.7	107.6
240	72.0	74.6	78.8	485	102.8	105.2	107.6
245	73.2	75.6	79.8	490	103.9	105.3	108.0
250	74.6	76.5	80.8	495	104.2	105.6	108.1
255	75.7	77.5	81.5	500	104.3	105.9	108.2
260	76.4	78.6	82.1	505	104.9	106.0	108.8
265	77.5	79.6	83.5	510	105.4	106.2	109.0
270	78.6	80.6	84.6	515	105.6	106.3	108.7
275	79.9	82.0	86.0	520	106.3	107.1	109.8
280	80.6	82.6	87.0	525	106.6	107.0	109.7
285	81.8	83.5	88.0	530	107.0	107.1	110.0
290	83.0	84.5	88.8	535	107.5	107.1	110.0
295	84.2	85.9	90.0	540	107.5	107.1	109.9
300	85.4	87.0	91.1	545	108.0	107.4	110.7
305	86.4	88.3	92.5	550	108.4	107.5	110.8
310	87.2	89.9	93.9	555	109.0	107.8	110.9
315	88.1	91.5	95.1	560	109.8	108.1	111.6
320	88.4	92.3	96.0	565	110.6	108.4	111.7
325	89.0	93.0	96.9	570	112.0	109.2	111.9
330	89.1	93.5	96.9	575	112.6	108.8	112.2
335	89.7	94.1	96.8	580	114.1	109.6	112.7
340	89.5	94.2	96.7	585	115.3	109.6	112.7
345	89.8	94.6	96.7	590	116.3	110.0	112.9
350	90.7	95.1	96.7	595	115.6	109.7	113.2
355	90.7	95.6	97.1	600	114.1	109.9	113.5
360	91.2	96.0	97.2	605	110.1	110.1	113.7
365	91.5	95.8	97.3	610	107.7	110.3	114.0
370	91.7	95.9	97.4	615	107.2	111.0	114.4
375	92.2	96.0	97.9	620	107.6	111.0	114.6
380	92.0	95.9	98.4	625	107.8	110.7	114.6
385	92.2	96.0	98.4	630	108.2	111.1	114.8
390	91.8	95.9	98.2	635	107.8	111.3	114.8
395	92.8	96.6	98.4	640	108.6	111.7	114.9
400	93.5	97.2	99.3	645	108.5	111.8	115.0
405	94.1	97.5	99.8	650	108.3	111.9	114.8
410	94.9	98.5	100.1	655	108.3	111.8	114.8
415	95.5	98.9	100.7	660	108.4	111.4	114.9
420	96.1	99.2	101.7	665	109.0	111.5	115.4
425	96.2	99.7	101.5	670	109.0	111.9	115.2
430	97.1	100.0	102.2	675	109.6	112.3	115.6

т	C_p (J mole ⁻¹ K ⁻¹)				
(°K)	Li _{0.363} WO ₃	Li _{0.437} WO ₃	Li _{0.478} WO ₃		
680	109.2	112.5	115.6		
685	109.2	112.2	116.1		
690	109.4	112.8	116.3		
695	109.5	112.7	115.8		
700	110.6	112.4	116.3		
705	110.4	112.8	116.1		
710	110.7	113.1	116.4		
715	110.4	113.0	116.6		
720	110.4	113.5	116.9		
725	110.8	113.4	117.4		
730	110.9	113.7	117.0		
735	111.9	114.4	117.6		
740	111.4	114.1	117.7		
745	111.6	114.2	117.8		
750	111.6	114.3	118.2		
755	111.4	114.5	118.0		
760	111.6	114.6	118.4		
765	111.8	114.7	118.4		
770	111.8	114.9	118.7		
775	111.8	114.8	118.6		
780	112.4	115.0	118.8		
785	112.0	114.9	119.0		
790	112.4	115.0	118.8		
795	112.6	115.1	119.1		
800	112.3	115.2	119.2		
805	112.7	115.4	119.4		

TABLE I (continued)

around 330 and 460°K in $Li_{0.437}WO_3$ and $Li_{0.478}WO_3$, showing the second-order phase transitions. The baselines of the heat capacity curve were determined so as to join to one another in smooth lines across the whole temperature range and the enthalpy and entropy increments were calculated and are given in Table III.

Shanks et al. (5) measured the electrical resistivity of cubic lithium tungsten bronzes,

FIG. 1. Heat capacities of $Li_{0.363}WO_3$, $Li_{0.427}WO_3$, and $Li_{0.478}WO_3$.

 $Li_{0.280}WO_3$ and $Li_{0.345}WO_3$, in the range 100 to 750°K. They found, in the case of $Li_{0.280}WO_3$, an increase in the slope of the electrical resistivity against temperature around 320°K and a rapid decrease in electrical resistivity around 600°K, but, in the case of $Li_{0.345}WO_3$, they found one anomaly in resistivity around 320°K.

Temperatures at which anomalies in electrical resistivity in $\text{Li}_{0.280}\text{WO}_3$ occur, 330 and 600°K, correspond to those at which heat capacity anomalies are observed in $\text{Li}_{0.363}$ -WO₃, 320 and 590°K. In the case of Na_{0.8}-WO₃, Taylor and Weller (6) observed an increase in the slope of electrical resistivity against temperature similar to that in $\text{Li}_{0.280}$ WO₃ around 320°K, and this increase in Na_xWO₃ was assumed to be caused by the increase in the number of slightly displaced atoms with respect to the ideal perovskite position (2). It may be concluded, therefore, that the heat capacity anomaly observed

Т (°К)	C_p (J mole ⁻¹ K ⁻¹)							
	Li _{0.363} WO ₃	Li _{0.478} WO ₃	Li _{0.478} WO ₃	Na _{0.485} WO ₃	Na _{0.698} WO ₃	Na _{0.794} WO ₃		
700	25.34	25.33	25.97	25.06	25.03	25.07		
800	25.74	25.96	26.62	25.69	25.52	26.62		

TABLE II

HEAT CAPACITY OF Li_xWO_3 and Na_xWO_3 per Gram-Atom (1/(4 + x) Mole)

TABLE III

ENTHALPY AND ENTROPY	Increments for the λ -Type Transit	IONS IN Lix WO3
----------------------	--	-----------------

		Li _{0.363} WO ₃	Ľi _{0.437} WO ₃	Li _{0.478} WO ₃
Peak 1	H (J mole ⁻¹) S (J mole ⁻¹ K ⁻¹)	433 ± 9 1.36 ± 0.03	357 ± 12 1.09 ± 0.04	449 ± 12 1.42 ± 0.04
Peak 2	H (J mole ⁻¹) S (J mole ⁻¹ K ⁻¹)	$\begin{array}{c} 211 \pm 10 \\ 0.45 \pm 0.03 \end{array}$	272 ± 12 0.59 ± 0.03	$\begin{array}{c} 236\pm10\\ 0.50\pm0.03\end{array}$
Peak 3	H (J mole ⁻¹) S (J mole ⁻¹ K ⁻¹)	882 ± 11 1.68 ± 0.03		

around 330° K in Li_{0.363}WO₃ occurs in the same mechanism as the phase transition in Na_xWO₃.

The large anomalous peak observed around 590° K in Li_{0.363}WO₃ may correspond to the rapid decrease in electrical resistivity in Li_{0.280}WO₃. X-ray diffraction of the quenched sample from 750°K showed the same pattern as those measured at the room temperatures, showing no change in the main cubic structure during the transition. As was suggested by Shanks *et al.* (5), the order–disorder process of lithium atoms may be considered for the interpretation of this phase transition. The entropy change for the transition is calculated in the zeroth approximation for this order–disorder process as

$$\Delta S = -R(0.363 \ln 0.363 + 0.637 \ln 0.637)$$

= 5.45 J mole⁻¹ K⁻¹.

This value, however, is quite large compared with the observed one, $1.68 \text{ J} \text{ mole}^{-1} \text{ K}^{-1}$, indi-

cating that this cannot be interpreted as such a simple process.

The origins of heat capacity anomalies observed around 330 and 460° K in Li_{0.437}WO₃ and Li_{0.478}WO₃ are also not clear, and further investigations such as neutron diffraction, thermal conductivity, and NMR spin-lattice relaxation rate should be performed.

References

- 1. W. OSTERTAG AND C. V. COLLINS, *Mat. Res. Bull.* 2, 217 (1967).
- 2. H. INABA AND K. NAITO, J. Solid State Chem. 15, 283 (1975).
- M. A. WECHTER, H. R. SHANKS, AND A. F. VOIGT, Inorg. Chem. 7, 845 (1968).
- K. NAITO, H. INABA, M. ISHIDA, Y. SAITO, AND H. ARIMA, J. Phys. E 7, 464 (1974).
- H. R. SHANKS, P. H. SIDLES, AND G. C. DANIELSON, "Nonstoichiometric Compounds," Advances in Chemistry Series, Vol. 39, p. 237 (1962).
- 7. B. E. TAYLOR AND P. F. WELLER, J. Solid State Chem. 1, 210 (1970).